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Abstract
We consider the integrable open XX quantum spin chain with non-diagonal
boundary terms. We derive an exact inversion identity, by which we obtain the
eigenvalues of the transfer matrix and the Bethe ansatz equations. For generic
values of the boundary parameters, the Bethe ansatz solution is formulated in
terms of the Jacobian elliptic functions.

PACS numbers: 75.10.−b, 05.50.+q

1. Introduction

In this paper we consider the open XX quantum spin chain with non-diagonal boundary terms,
defined by the Hamiltonian

H = 1

2

{
N−1∑
n=1

(
σxn σ

x
n+1 + σyn σ

y

n+1

)
+ i coth ξ−σ z1 +

2iκ−
sinh ξ−

σx1 − i coth ξ+σ
z
N +

2iκ+

sinh ξ+
σxN

}

(1.1)

whereσx, σ y, σ z are the standard Pauli matrices, and ξ±, κ± are arbitrary boundary parameters.
This model is known to be integrabled [1–3]. It has been investigated [4, 5] using a
fermionization technique [6, 7], suitably adapted to accommodate boundary terms [8, 9].
However, until now this model has resisted a direct Bethe ansatz solution due to the absence
of a simple reference (pseudovacuum) state1. Such a solution is desirable for a number
of reasons. First, the open XX chain is a special case of integrable open XXZ and open
XYZ chains, which should also admit Bethe ansatz solutions but which cannot be solved by
fermionization. Second, Bethe ansatz solutions are particularly well-suited for investigating
physical properties, such as ground state, low-lying excitations, scattering matrices, etc.
In particular, the Bethe ansatz approach avoids the projection mechanism [5] which can
be implemented only in special cases (see [4, 5] and references therein for discussions of
1 For the special case of diagonal boundary terms (i.e. κ± = 0), a simple pseudovacuum state does exist, and a Bethe
ansatz solution is known [1, 10].
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interesting physical applications of the open XX spin chain). Finally, the Sklyanin transfer
matrix for the open XX spin chain is closely related to the Yang matrix [11–13] for a large
class of integrable N = 2 supersymmetric quantum field theories with boundary [14, 15].
Diagonalization of this matrix is a key step in formulating the thermodynamic Bethe ansatz
equations for these N = 2 supersymmetric models.

In this paper we derive an exact inversion identity for the model (1.1), by which we obtain
the eigenvalues of the transfer matrix and the Bethe ansatz equations. This approach does
not completely circumvent the problem of not having a reference state, since the eigenvectors
are not determined. We obtain the inversion identity using the open-chain fusion formula
[16] together with the remarkable fact that, for the open XX spin chain/6-vertex free-Fermion
model, the fused transfer matrix is proportional to the identity matrix. A similar strategy has
recently been used [13] to solve the open 8-vertex free-Fermion [17] model, which corresponds
to the case of N = 1 supersymmetry. These techniques are generalizations of those which
have been developed for closed spin chains [18–21].

Even though the transfer matrix is constructed entirely from hyperbolic functions, we find
that the Bethe ansatz solution is formulated in terms of Jacobian elliptic functions for generic
values of the boundary parameters. (In contrast, for the XYZ chain [18], such functions appear
already in the transfer matrix.) For special values of the boundary parameters, the elliptic
functions degenerate into ordinary hyperbolic or trigonometric functions.

The outline of this paper is as follows. In section 2, we review the construction of
the Sklyanin transfer matrix for the open XX chain, and derive some of its important properties.
We derive in section 3 the inversion identity, which we then use in section 4 to determine the
Bethe ansatz solution. In section 5, we investigate some special cases in which the solution can
be expressed in terms of ordinary hyperbolic functions. In particular, we verify that our solution
is similar to the known one [1, 10] for the case of diagonal boundary terms. In section 6,
we conclude with a brief discussion of some possible directions for future work.

2. Transfer matrix

The object of central importance in the construction of integrable quantum spin chains is the
one-parameter family of commuting matrices called the transfer matrix. The transfer matrix
for an open chain is made from two basic building blocks, called R (bulk) and K (boundary)
matrices.

An R matrix is a solution of the Yang–Baxter equation

R12(u− v) R13(u) R23(v) = R23(v) R13(u) R12(u− v) (2.1)

(see, e.g., [21–23]). The XX spin chain is a special case of the XXZ spin chain, corresponding
(in the notation of [1]) to the anisotropy value η = iπ

2 . The R matrix is therefore the 4 × 4
matrix

R(u) =



a 0 0 0
0 b c 0
0 c b 0
0 0 0 a


 (2.2)

with matrix elements

a = sinh
(
u +

iπ

2

)
b = sinhu c = sinh

iπ

2
(2.3)

which satisfy the free-Fermion condition

a2 + b2 = c2 . (2.4)
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This R matrix has the symmetry properties

R12(u) = P12R12(u)P12 = R12(u)
t1t2 (2.5)

whereP12 is the permutation matrix and t denotes transpose. Moreover, it satisfies the unitarity
relation

R12(u) R12(−u) = ζ(u)I ζ(u) = − cosh2 u (2.6)

and the crossing relation

R12(u) = V1R12(−u− ρ)t2V1 (2.7)

with

ρ = − iπ

2
V = σx . (2.8)

Finally, it has the periodicity property

R12(u + iπ) = −σ z2R12(u)σ
z
2 = −σ z1R12(u)σ

z
1 . (2.9)

The matrixK−(u) is a solution of the boundary Yang–Baxter equation [24]

R12(u− v) K−
1 (u) R21(u + v) K−

2 (v) = K−
2 (v) R12(u + v) K−

1 (u) R21(u− v). (2.10)

We consider here the following 2 × 2 matrix [2, 3]

K−(u) =
(

sinh(ξ− + u) κ− sinh 2u
κ− sinh 2u sinh(ξ− − u)

)
(2.11)

which evidently depends on two boundary parameters ξ− , κ−. We set the matrixK+(u) to be
K−(−u− ρ) with (ξ− , κ−) replaced by (ξ+ , κ+); i.e.,

K+(u) =
(

i cosh(ξ+ − u) κ+ sinh 2u
κ+ sinh 2u −i cosh(ξ+ + u)

)
. (2.12)

We shall often use an alternative [3] set of boundary parameters (η∓ , ϑ∓) which is related to
the set (ξ∓ , κ∓) by

cos η∓ coshϑ∓ = i

2κ∓
sinh ξ∓ cos2 η∓ + cosh2 ϑ∓ = 1 +

1

4κ2∓
. (2.13)

The K matrices have the periodicity property

K∓(u + iπ) = −σ zK∓(u)σ z . (2.14)

The transfer matrix t(u) for an open chain of N spins is given by [1]

t (u) = tr0K
+
0 (u) T0(u) K

−
0 (u) T̂0(u) (2.15)

where tr0 denotes trace over the ‘auxiliary space’ 0, and T0(u), T̂0(λ) are so-called monodromy
matrices2

T0(u) = R0N(u) · · ·R01(u) T̂0(u) = R10(u) · · ·RN0(u) . (2.16)

Indeed, Sklyanin has shown that t(u) constitutes a one-parameter commutative family of
matrices

[t (u) , t (v)] = 0 . (2.17)

2 As is customary, we usually suppress the ‘quantum-space’ subscripts 1, . . . , N.
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Typically, the Hamiltonian is proportional to the first derivative of the transfer matrix t ′(0) [1].
However, this quantity is trivial for the XX model, due to the fact trK+(0) = 0. In order to
obtain the Hamiltonian, we must go to the second derivative [25]. We find

H = t ′′(0)
4(−1)N+1i sinh ξ− trK+′(0)

=
N−1∑
n=1

Hn,n+1 +
i

2 sinh ξ−
K−′

1 (0) +
tr0K

+′
0 (0) HN0 − i tr0K

+
0 (0) H

2
N0

trK+′(0)
(2.18)

where Hn,n+1 = Pn ,n+1R
′
n ,n+1(0), and we have made use of the facts K−(0) = sinh ξ−I and

tr0K
+
0 (0) HN0 = trK+′′(0) = 0. By explicitly evaluating (2.18), we obtain the Hamiltonian

(1.1). Notice that the Hamiltonian is Hermitian if ξ± are imaginary and κ± are real. The
corresponding energy eigenvalues E are given by

E =  ′′(0)
8(−1)N+1 sinh ξ− sinh ξ+

(2.19)

where (u) are eigenvalues of the transfer matrix.
The transfer matrix has the periodicity property

t (u + iπ) = t (u) (2.20)

as follows from (2.9), (2.14). Moreover, the transfer matrix has crossing symmetry

t
(
−u− iπ

2

)
= t (u) (2.21)

which can be proved using a generalization of the methods developed in the appendices of
[26]. Finally, we note that the transfer matrix has the asymptotic behavior (for κ± �= 0)

t (u) ∼ κ−κ+iN
eu(4+2N)

21+2N
I + · · · for u→ ∞ . (2.22)

3. Inversion identity

Our main objective is to determine the eigenvalues  (u) of the open-chain transfer matrix
(2.15), from which the energy eigenvalues (2.19) immediately follow. We shall accomplish
this using an exact inversion identity, which we first derive. A similar approach was used in
[18, 19] for closed chains. This approach is based on the concept of fusion [20, 21].

The derivation of the inversion identity for the open XX spin chain/6-vertex free-Fermion
model closely parallels the one for the 8-vertex free-Fermion model considered in [13]. For
brevity, we shall often refer to these two models as the N = 2 andN = 1 models, respectively.
The principal tool which we use to derive the inversion identity is the open-chain fusion formula
obtained in [16]. We shall henceforth refer to this reference as I.

The matrix R12(u) at u = −ρ = iπ
2 is proportional to the one-dimensional projector P−

12

P−
12 = 1

2




0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0


 (P−

12)
2 = P−

12 . (3.1)

As explained in I, from the corresponding degeneration of the (boundary) Yang–Baxter
equation, one can derive identities which allow one to prove that fused (boundary) matrices
satisfy generalized (boundary) Yang–Baxter equations.
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The fused R matrix is given by (I 2.13)

R〈12〉3(u) = P +
12 R13(u) R23(u + ρ) P +

12 (3.2)

where P +
12 = I − P−

12. An important observation is that the fused R matrix can be brought to
the following upper triangular form by a similarity transformation

X12 R〈12〉3(u) X−1
12 =



sI ∗ ∗ ∗
0 tσ z −2tσ z 0
0 0 −tσ z 0
0 0 0 0


 (3.3)

where

s = cosh2 u t = i coshu sinhu (3.4)

and the 4 × 4 matrix X is given by

X =




0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0


 . (3.5)

It follows that the fused monodromy matrices (I 4.7), (I 5.4), (I 5.5)

T〈12〉(u) = R〈12〉N (u) · · ·R〈12〉1(u)
(3.6)

T̂〈12〉(u + ρ) = R〈12〉1(u) · · ·R〈12〉N(u)

also become triangular by the same transformation,

X12 T〈12〉(u) X−1
12 =



sN I ∗ ∗ ∗
0 tNF ((−1)N − 1)tNF 0
0 0 (−t)NF 0
0 0 0 0




= X12 T〈12〉(u + ρ) X−1
12 (3.7)

where F = ∏N
i=1σ

z
i .

The corresponding fused K matrices are given by (I 3.5), (I 3.9)

K−
〈12〉(u) = P +

12K
−
1 (u) R12(2u + ρ)K−

2 (u + ρ)P +
12

(3.8)
K+

〈12〉(u) = {P +
12K

+
1 (u)

t1R12(−2u− 3ρ)K+
2 (u + ρ)t2P +

12}t12

sinceM = V tV = I.
Unlike the N = 1 case [13], the similarity transformation does not bring also the fused

K matrices to upper triangular form3. Nevertheless, the transformed fused K matrices are
‘almost’ triangular

X12 K
∓
〈12〉(u) X

−1
12 =



m∓

1 ∗ ∗ ∗
0 m∓

2 m∓
5 0

0 m∓
4 m∓

3 0
0 0 0 0


 (3.9)

3 It is not possible to simultaneously triangularize bothR〈12〉3 (u) andK−
〈12〉(u), since their commutator is not nilpotent;

i.e.,
[
R〈12〉3(u) ,K−

〈12〉(u)
]n �= 0. A monograph on the general problem of simultaneous triangularization has recently

been published [27].
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where

m∓
1 = ± 1

2 sinh 2u
[
cosh 2u− cosh 2ξ∓ + 2κ2

∓ sinh2 2u
]

m∓
2 = − i

2 sinh 2u
[
sinh 2(u± ξ∓)− 8κ2

∓ coshu sinh3 u
]

m∓
3 = − i

2 sinh 2u
[
sinh 2(u∓ ξ∓) + 8κ2

∓ cosh3 u sinhu
]

(3.10)

m∓
4 = iκ2

∓ cosh 2u sinh2 2u

m∓
5 = ± i

2 sinh 4u sinh 2ξ∓.

The fused transfer matrix t̃ (u) is given by (I 4.5), (I 4.6)

t̃ (u) = tr12 K
+
〈12〉(u) T〈12〉(u) K−

〈12〉(u) T̂〈12〉(u + ρ) . (3.11)

With the help of the results (3.7), (3.9),(3.10), we now obtain the remarkable result that the
fused transfer matrix is proportional to the identity matrix,

t̃ (u) =  ̃(u)I (3.12)

where

 ̃(u) = s2Nm+
1m

−
1 + t2N

[
m+

2m
−
2 +m+

3m
−
3 + (−1)N

(
m+

4m
−
5 +m−

4 m
+
5

)
+ (1 − (−1)N)(m+

3m
−
4 +m−

3 m
+
4 −m+

2m
−
4 −m−

2 m
+
4 + 2m−

4 m
+
4)

]
. (3.13)

A similar result also holds for the N = 1 case [13].
The fusion formula is given by (I 4.17), (I 5.1)

t (u) t (u + ρ) = 1

ζ(2u + 2ρ)
[t̃ (u) +({K+(u)}({K−(u)}δ{T (u)}δ{T̂ (u)}] (3.14)

where the transfer matrix t(u) is given by (2.15) (see also (I 4.1), (I 4.2)), and the quantum
determinants [21, 28] are given by (I 4.15), (I 5.3), (I 5.7)

δ{T (u)} = δ{T̂ (u)} = ζ(u + ρ)N

({K−(u)} = tr12
{
P−

12K
−
1 (u)R12(2u + ρ)K−

2 (u + ρ) V1 V2
}

(3.15)
(

{
K+(u)

} = tr12
{
P−

12V1V2K
+
2 (u + ρ)R12(−2u− 3ρ) K+

1 (u)
}
.

It follows from (3.12) to (3.15) that the transfer matrix obeys an exact inversion identity

t (u) t
(
u− iπ

2

)
= f (u)I (3.16)

where the function f (u) is given by

f (u) = tanh2 2u
[
g1(u) cosh4Nu + g2(u) sinh4Nu + g3(u) sinh2N u cosh2Nu

]
(3.17)

with

g1(u) = 1
4

(
cosh 2u− cosh 2ξ− + 2κ2

− sinh2 2u
) (

cosh 2u− cosh 2ξ+ + 2κ2
+ sinh2 2u

)
= 16κ2

+κ
2
− cosh(u + iη−) cosh(u− iη−) cosh(u + iη+) cosh(u− iη+)

× cosh(u + ϑ−) cosh(u− ϑ−) cosh(u + ϑ+) cosh(u− ϑ+)

g2(u) = g1

(
u +

iπ

2

)
g3(u) = 2κ2

+ κ
2
−

[
1+(−1)N+sinh2 2u

]
sinh2 2u+(−1)N

[(
κ2

+ cosh 2ξ−+κ2
− cosh 2ξ+

)
sinh2 2u

+ 1
2 (cosh 2ξ− cosh 2ξ+ sinh2 2u− sinh 2ξ− sinh 2ξ+ cosh2 2u)

]
= 2κ2

+ κ
2
−

[
sinh2 2u cosh2 2u+(−1)N

(
sin 2η− sinh 2ϑ− sin 2η+sinh 2ϑ+cosh2 2u

+ cos 2η− cosh 2ϑ− cos 2η+cosh 2ϑ+sinh2 2u
)]
. (3.18)

The inversion identity (3.16)–(3.18) is the first main result of our paper. We have checked
it numerically up to N = 3.
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4. Eigenvalues and Bethe ansatz equations

Having obtained the inversion identity, we now use it to determine the eigenvalues of the
transfer matrix. The commutativity relation (2.17) implies that the transfer matrix has
eigenstates | 〉 which are independent of u,

t (u)| 〉 =  (u)| 〉 (4.1)

where  (u) are the corresponding eigenvalues. Acting on | 〉 with the inversion identity, we
obtain the corresponding identity for the eigenvalues

 (u) 
(
u− iπ

2

)
= f (u) . (4.2)

Similarly, it follows from (2.20) and (2.21) that the eigenvalues have the periodicity and
crossing properties

 (u + iπ) =  (u)  
(
−u− iπ

2

)
=  (u) . (4.3)

Finally, (2.22) implies the asymptotic behaviour

 (u) ∼ κ−κ+iN
eu(4+2N)

21+2N
+ · · · for u→ ∞. (4.4)

We shall assume that the eigenvalues have the form

 (u) = ρ sinh 2u
N∏
j=0

sinh(u− uj ) cosh(u + uj ) (4.5)

where uj and ρ are (u-independent) parameters which are to be determined. Indeed, this
expression satisfies the periodicity and crossing properties (4.3), and it has the correct
asymptotic behaviour (4.4) provided that we set

ρ = iN4κ−κ+ . (4.6)

We now substitute the ansatz (4.5) into the inversion identity (4.2), and obtain

(−1)Nρ2 sinh2 2u
N∏
j=0

1

4
sinh 2(u− uj ) sinh 2(u + uj ) = f (u) . (4.7)

Recalling the explicit expression (3.17), (3.18) for f (u), we verify that both sides of the
equation have the same asymptotic behaviour ∼ eu(8+4N) for u→ ∞. Since the LHS has zeros
±uj, these must be zeros of f (u). That is4,

g1(uj ) cosh4N uj + g2(uj ) sinh4N uj + g3(uj ) sinh2N uj cosh2N uj = 0 . (4.8)

Dividing by cosh4N uj , we obtain

g2(uj ) tanh4N uj + g3(uj ) tanh2N uj + g1(uj ) = 0. (4.9)

Regarding (4.9) as the quadratic equation

g2x
2 + g3x + g1 = 0 (4.10)

in the variable x = tanh2Nuj , we conclude that the parameters uj satisfy the Bethe ansatz
equations

tanh2N uj = h(uj )

g2(uj )
(4.11)

4 The three functions gi(u), i = 1, 2, 3, are even functions of u. Hence, if uj is a root of f (u), then so is −uj.
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where the function h(u) is defined by

h(u) = −g3(u)±
√
g3(u)2 − 4g1(u) g2(u)

2
. (4.12)

The square root in (4.12) can be eliminated by making an appropriate change of variables.
Indeed, with the help of (3.18), one can show that

h(u) = κ2
+κ

2
−

{
−sinh2 2u cosh2 2u− (−1)N

(
γ1 cosh2 2u + γ2 sinh2 2u

)
± sinh 2u cosh 2u

√
α sinh2 2u + β

}
(4.13)

where

α = 1
2 (cos 4η− + cos 4η+ + cosh 4ϑ− + cosh 4ϑ+) + (−1)N [cos 2(η− + η+) cosh 2(ϑ− − ϑ+)

+ cos 2(η− − η+) cosh 2(ϑ− + ϑ+)]

β = [
sin 2η− sinh 2ϑ− + (−1)N sin 2η+ sinh 2ϑ+

]2 − 1
4 [sin 2(η− + η+) sinh 2(ϑ− − ϑ+)

+ sin 2(η− − η+) sinh 2(ϑ− + ϑ+)]
2

γ1 = sin 2η− sinh 2ϑ− sin 2η+ sinh 2ϑ+

γ2 = cos 2η− cosh 2ϑ− cos 2η+ cosh 2ϑ+ . (4.14)

Let us change from the spectral parameter u to the new spectral parameter v defined by

sinh 2u = i sn 2v cosh 2u = cn 2v (4.15)

where the modulus k of the Jacobian elliptic functions is given by

k2 = α

β
. (4.16)

With the help of the identities (see, e.g., [29])

cn2 z + sn2 z = 1 dn2 z + k2 sn2 z = 1 (4.17)

one can see that the function h(u) can be re-expressed as

h(u) = κ2
+κ

2
−

{
sn2 2v cn2 2v − (−1)N

(
γ1 cn2 2v − γ2 sn2 2v

) ± i sn 2v cn 2v dn 2v
√
β
}
.

(4.18)

Hence, the Bethe ansatz solution (4.5), (4.6), (4.11) can be reformulated as

 (u) = (− 1
2 )
N−1κ+κ− sn 2v

N∏
j=0

(
sn 2v − sn 2vj

)
(4.19)

where the parameters vj satisfy(
cn 2vj − 1

cn 2vj + 1

)N

= sn2 2vj cn2 2vj−(−1)N
(
γ1 cn2 2vj−γ2 sn2 2vj

) ± i sn 2vj cn 2vj dn 2vj
√
β

(cn 2vj−cn 2iη+)(cn 2vj−cn 2ϑ+)(cn 2vj−cn 2iη−)(cn 2vj−cn 2ϑ−)
.

(4.20)

This Bethe ansatz solution is the second main result of our paper. This result passes several
tests. Indeed, for N = 0, 1, the eigenvalues agree with those obtained by direct diagonalization
of the transfer matrix. Moreover, as discussed in the following section, our solution is similar
to the known one [1, 10] for the case of diagonal boundary terms.
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5. Special cases

For generic values of the boundary parameters, the Bethe ansatz solution presented in the
previous section is formulated in terms of Jacobian elliptic functions. However, for modulus
k = 0, 1 or ∞, these elliptic functions degenerate into ordinary trigonometric or hyperbolic
functions. Equivalently, the argument of the square root in (4.13) then becomes a perfect
square, and so the square root effectively disappears. We now briefly consider some of these
special cases.

5.1. Diagonal case

In the limit κ± → 0, the K matrices (2.11), (2.12) become diagonal, and therefore so do
the boundary terms in the Hamiltonian (1.1). The transfer matrix t(u) now commutes with
the operator F = ∏N

i=1 σ
z
i , and hence, both operators can be simultaneously diagonalized.

Denoting the corresponding eigenstates by | (±)〉, we have

t (u)| (±)〉 =  (±)(u)| (±)〉
F | (±)〉 = ±| (±)〉. (5.1)

The transfer matrix now has the asymptotic behaviour

t (u) ∼ ρ eu(2+2N)

21+2N
F + · · · for u→ ∞ (5.2)

where

ρ =
{

i cosh(ξ+ − ξ−) for N = even
i sinh(ξ+ − ξ−) for N = odd.

(5.3)

The eigenvalues are given by

 (±)(u) = ±ρ sinh 2u
N∏
j=1

sinh(u− uj ) cosh(u + uj ) (5.4)

which is similar to (4.5) except with one less root.
In terms of the boundary parameters η± , ϑ± (2.13), the limit κ± → 0 corresponds to

η± = iξ± − π

2 (5.5)
e−ϑ± = 1

κ±
→ ∞.

In this limit the function h(u) becomes equal (for N = even) to

h(u) = −sinh(u∓ ξ−) cosh(u∓ ξ−) sinh(u± ξ+) cosh(u± ξ+). (5.6)

Moreover, the Bethe ansatz equations (4.11) become

tanh2N uj = − sinh(uj ∓ ξ−) sinh(uj ± ξ+)

cosh(uj ± ξ−) cosh(uj ∓ ξ+)
. (5.7)
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These results are similar to those obtained previously [1, 10] for the XXZ chain. The two
choices of signs correspond to the two possible pseudovacua—either all spins up or all spins
down.

5.2. Non-diagonal cases

Within the space of boundary parameters, there are various submanifolds, such as

η− − η+ ± i(ϑ− − ϑ+) = π

2

1 + (−1)N

2
(5.8)

for which α = k = 0.
As a simple example, let us consider the particular case N = odd, η− = η+ ≡ η,

ϑ− = ϑ+ ≡ ϑ , for which also β = 0. The function h(u) becomes equal to

h(u) = −κ2
+κ

2
− sinh 2(u− iη) sinh 2(u + iη) sinh 2(u− ϑ) sinh 2(u + ϑ) . (5.9)

We then obtain the Bethe ansatz equations

tanh2N uj = −coth(uj + iη) coth(uj − iη) coth(uj + ϑ) coth(uj − ϑ). (5.10)

6. Discussion

This work raises a number of interesting questions, some of which we discuss below. We
have seen that the doubly-periodic functions in the Bethe ansatz solution degenerate into
singly-periodic functions for special values of the boundary parameters. In [5], important
simplifications are also found to occur for special values of the boundary parameters. It is
likely that these two observations are related.

As we have emphasized, an exact inversion identity for the XX (or N = 2) case is made
possible by the key fact that the fused transfer matrix is proportional to the identity matrix. A
similar result also holds for the N = 1 case [13]. It would be interesting to better understand
the relation of this phenomenon to the free-Fermion condition.

The model (1.1) is not the most general integrable open XX chain. Indeed, the most
general solution [2, 3] of the XXZ boundary Yang–Baxter equation has the off-diagonal terms
κ
(1)
± sinh 2u and κ(2)± sinh 2u, while here we have restricted to the special case κ(1)± = κ(2)± ≡ κ±

(see equations (2.11) and (2.12)). However, we do not expect that the more general case will
lead to new significant complications. In particular, we expect that the same approach can
be used to derive an exact inversion identity and to obtain the corresponding Bethe ansatz
solution.

Since the model (1.1) has various boundary parameters, its phase diagram is likely to have
a rich structure. Our exact Bethe ansatz solution should provide a means of exploring these
phases. Moreover, as mentioned in the introduction, this solution opens the way to formulating
the thermodynamic Bethe ansatz equations for integrable N = 2 supersymmetric quantum
field theories with boundary [14, 15], as was done for the case of N = 1 supersymmetry in
[13]. Finally, with the insight gained from the XX chain, it might now be possible to finally
solve the open XXZ chain with non-diagonal boundary terms.

We hope to report on some of these problems in future publications.
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